Research into blodiversity was just published in the journal Science relating to man-mede islands in

Blodiversity in Forest Fragmants Proves Precarlous 26 September 2013
htto:/fnows sclencemag.orglenvironment/2013/09/biodiversity-forest-fragments-proves-precarlous

Anthony Lynam; (insel) Luke Glbson

Going, going ... Small mammal species have disappeared more quickly than expected from the forest fragments on islands created by flooding in southern Thalland. Populations of surviving specles, such as thls moonral (insel), have plummeted.
As deforestation accelerates around the world, ecologists have incraasingly pinned their hopes of preserving blodiversity on nurturing the lsolated patches of forest often lefl behind. But new research suggests that small mammal species native to these forest fragments are at greater risk of extinction than previously thought.

The filling of the Chlew Lam Reservoir in southem Thalland in 1988 and 1987 created more than 100 istands and presentad a rare opportunity to study the effects of sudden isolation on small-mammal communlties. In the early 1880s, a tearn led by population geneticist David Woodrull of the University of Callfornla, San Dlego, set traps to survey small mammais on 12 of the islands, ranging in size from 0.3 to 58.3 hectares. They found that after 5 to 7 years of isolation, the three blggest islands were still home to seven to 12 species of mice, rats, squirrels, and shrews. The range of species was similer to that found in a large, undisturbed forast on the nearby mainland. On the small islands, however, the resaarchers found just one to three species, indlcating a rapid decline in diversily, presumably because the isiands were too small to sustain animal communities.

Ecologlst Luke Gibson of the Natlonal Unlversity of Singapore and colleagues revisited those isiands plus four more in 2012 and 2013 to repeat the surveys, with some dramatic resuits. Six of 12 species prasent in the eariy 18903, Including the penci-talled tree mouse and the red splny rat, have apparently disappeared. Flve other species have declined dramatically. For example, the 1983 survey turned' up 47 common tree shrews, but only one was found in 2013. "We documented the near-complete extinction of an entre group of animals," Gibson seys.

In contrast, Maleyan field ral numbers exploded, from 77 In 1982 to 289 in 2013. This rat is not normally found In the region's undilsturbed forests but likely migrated to the islands from villages and agricultural araas after Inundation. It now dominates the islands but ls rare in the Intact forests of the nearby mainiand.

In the absence of other obvious causes, the researchers blame the loss of species on fragmentation and the impact of the invasive rat. This one-two punch "underscores a dre need to maintain large intact forest blocks to sustain tropical blodiversity," the authors witte today inSclence. Gibson adds that the loss of specles occirred more quickly than hes been reporied by other groups studying other sites around the world.
"This atudy makes a valuable contribution in quanufying how fast the axtinctions take plece-very fast in this case, ${ }^{\text {n }}$ says likka Hanski, an ecologist at the Univarsity of Helsink. But he notes that the study does not tease out whether the fragmentation or the rat Invasion had a greater Impact. Robin Chazdon, an ecologist at the University of Connecticut, Storrs, notes that the mechanism by which the Invasive rats contributed to the demise of nalve spectes-whether they devoured avallable food or introduced new diseases-ls not clear. "These findings are not directly relevant to forest fragments in terrestrial landscapes," where animals from surrounding areas could recolonize the isolated patch, she says.

Gibson agrees that it is difficult to saparate the impact of forest fragmant size from that of the rats. "Our data don't show any direct mechanism," for how the rodents might have tipped the scales against the natives, he says. As for the implications for fragments on large land masses, he argues that these smallislands provide "a sign of things to come." For example, he says a recent study of Brazils Adantic forests found that 80% of fragiments remeining after daforestation are 50 hectaras or smaller-about the size of the Thal isiand samples Although most forest fragments are not ringed by water, they are nonetheless "increasingly surrounded by intensive agricultural landscapes that offen harbor Invasive animal species," Gibson says. Beyond preserving large intact forests, he adds, conservatori efforts should alm to keep or create lorested corridors to link small fragments of important habitat or to connect them to larger forests nearby.

Questions

1. Explain how this forest ecosyatern became fragmented
2. Summarize the scientists findings about blodiversity on the a. Small islands
b. Large islands
3. Make a simple graph of the overall findings by Luke Gibson between the early 1990s and 2012-13.

APES Lab: Simulation of Habitat Islands

Habitats, of various types, once covared thousands of acres of land in the United States and many other countries. These habitat areas are being reduced to small fractions of their original size as humans turn more wild lands into urban and suburban areas, farms and pastures, hlghways, and other areas. These habltat "patches" are llike islands of safety for the animals, as well as plants, that need the area to survive; these organlsms are often surrounded by a sea of unsultable habltat. When a habitat is fragmented like this, it becomes a serles of iltte habitat islands that are varlous sizes and varlous distances from each other. There is often a larger habitat area (ilke a malnland for islands in the ocean). This serves as a source of new Individuals for the smalier habitat islands. For example, there are 156 protected national forests in the U.S., such as the Ocala Natlonal Forest, A national forest might serve as a source population of squirrels that migrate through farmland In order to reach the forest habitat islands.

SImulation:

A 10,000 acre part of the Ocala National Forest has been leased to the lgotubabe Lumber Company. As part of the leasing agreement, the lumber company agrees to leave a 1,000 acre island in the center of the forest uncut. In addition, they will leave several patches of forest totaling about 1,000 acres uncut.

Your Task:
Your group will be the forestry science team appointed by the government to determine what kind of forest Islands are the most desirable in order to save native fauna and flora, which may migrate between habltat islands. Your choices are:

1. Islands that are near the source population and small in size
2. Islands that are near the source population and large in size
3. Islands that are far away from the source population and small in size
4. Islands that are far away from the source population and large in size

Your team will use the following materlals to carry out the blogeography simulation:
100 organisms m "counters" (e.g., beans, pennles, clrcles of paper) and Habltat Island Patterns. The "counters" represent Individuals of a migrating specles that have ventured out to the islands from the source population. The chances of a counter landing on a paper island represent the same chances a migrating organism has of colonizing a real habitat Island.

1. Hypothesize which Island you think will have the greatest specles diversity (or specles richness and the greatest specles abundance.
*Rank the four types of Islands (IIsted above 1-4) In the order you think they
should be ranked, from the one you axpect to have the most speles suriving should be ranked, from the one you expect to have the most specles surviving to the one you expect to have the least specles surviving.

Write out your hypothesis of what you think the simulation will show about the four islands' specles survival (remember to use an "If-then statement"). 2. The Set-Up
(A) Brown $=$ largest clrcle $=$ Source population $=25.5 \mathrm{~cm}=10$ inches dameter Green and Yellow $=$ two medlum slzed clrcies: Green $=$ near, Yellow $=$ far= 17.8 $\mathrm{cm}=7$ inches dlameter
Blue and Red $=$ two 5 mall circles: Blue $=$ far, Red $=$ near $=10.2 \mathrm{~cm}=4 \mathrm{ln}$. diameter.
(B) On a flat surface (floor or lab table-top), place/tape down the circles in the foliowing manner: Brown circle In center of area; the Red 2.54 cm (1 Inch) due North of Brown (source population); the Green 2.5 cm due West of Brown; Yellow $15.2 \mathrm{~cm}(6 \mathrm{in}$.) due South of Brown; Blue is placed 15.2 cm due East of Brown circle.
3. Data Collection
(A) Hold all the counters in a cup one meter above the center point of the Source Population. Drop all the counters.
(B) Record the number of counters that land on each of the Islands. These are organisms that made it to the Island and survived. Counters that did not land on an island are organisms that encountered unsultable habltat. For example, a forest mouse may get eaten by a hawk while crossing farmland.
(C) Drop the counters and record the number that landed on each island four more times. (For a total of 5 drops all together). Once you have done this, find the average number of counters that landed on each island.

4. Using the Data

(A) Rank the Islands again on the habitat island simulation report page, this time based on your own data. The lsland on which the most counters landed, on average, is the sland that has the highest specles survival, and the Isiand on which the least counters landed, on average, is the Island that has the lowest specles survival. This will be the report you glve the government to support your recommendations for the national forest.

APES: Habitat Island Simulation Report

HYPOTHESIS

1. (a) Rank the Islands from the Habltat Islands Activity, with a "1" being the Island you think will have the most specles and a " 4 "being the island you think will have the fewest species.
\qquad
Large Far:
Small Far: \qquad
(b) Now write out your hypothesls of what you think the simulation will show about the four Islands' specles survival.

DATA
2. Using the data from the Habltat Island Actlvity, fll in the table below and calculate the average of your five trials.

Trial \#	YELLOW Large Far	GREEN Large Near	BLUE Small Far	RED Small Near
1				
2				
3				
4				
5				
Mean				

ANALYSIS

3. After you've found the average number of counters that landed on each island, rank the four islands (Small Near, Large Near, Large Far, Small Far) from the one that had the most specles successfully Immigrate to the island to the one that had the least species successfully Immigrate.

CONCLUSIONS

4. What type of habitat Islands do you think forest sclentists should save to protect the greatest amount of blodiversity, and why?
5. How do your data compare to the hypothesls that you made when you answered Questions \#1? How do your results compare to the results of other groups?
6. You make your recommendation to the government about whlch forest habitat Islands should be protected. A government officlal asks why people are worried about the forest specles going extinct if all these populations are colonizing the habitat Islands. You have to explain to this official the difference between population extinction and specles extinction. Then you have to explain why people are worried about species extinctions as well as population extinctions, using an example of a specles from your forest habltat islands. What do you say to thls official?
